Field (geography)

In the context of Spatial Analysis, Geographic Information Systems, and Geographic Information Science, the term field has been adopted from physics, in which it denotes a quantity that can be theoretically assigned to any point of space, such as temperature or density. This use of field is synonymous with the spatially dependent variable that forms the foundation of geostatistics and crossbreeding between these disciplines is common. Both scalar and vector fields are found in geographic applications, although the former is more common. The simplest formal model for a field is the function, which yields a single value given a point in space (i.e., t = f(x, y, z) )

Even though the basic concept of a field came from physics, geographers have developed independent theories, data models, and analytical methods. One reason for this apparent disconnect is that "geographic fields" tend to have a different fundamental nature than physical fields; that is, they have patterns similar to gravity and magnetism, but are in reality very different. Common types of geographic fields include:

Geographic fields can exist over a temporal domain as well as space. For example, temperature varies over time as well as location in space. In fact, many of the methods used in Time Geography and similar spatiotemporal models treat the location of an individual as a function or field over time.

History and Methods

The modeling and analysis of fields in geographic applications was developed in five essentially separate movements, which have gradually been integrated in recent years.

The single concept that underlies each of these methods is the concept of spatial dependence or spatial autocorrelation, probably most succinctly expressed as Tobler's first law of geography: "Everything is related to everything else, but near things are more related than distant things." Although it is more of a general tendency than a universal law, Tobler's Law (and the frequent exceptions to it) forms the basic language for understanding patterns in geographic fields.

This use of field should not be confused with that of computer science and databases, which is also frequently used in geographic information systems.